DELTA LIGHT PROPAGATION VOLUMES
FOR MIXED REALITY

Tobias Alexander Franke
Tobias.franke@igd.fraunhofer.de
Problem definition
Global Illumination between real and virtual worlds

- Mixed Reality needs proper relighting
 - Real to virtual → e.g. real light on virtual surface
 - Virtual to real → e.g. virtual lights illuminating real surfaces
 - Real to virtual to real → e.g. real light bouncing off virtual surface back on reality, real light blocked by virtual geometry casting shadows
- So far two (three) reliable real-time Global Illumination solutions
 - Differential Instant Radiosity
 - Multi-resolution splatting
 - (Irradiance Caching by Peter and Hannes)
- Temporal coherency and speed issues
The Delta Radiance Field

Theory

L^μ
The Delta Radiance Field

Theory

L^ρ
The Delta Radiance Field

Theory

\[L^\rho - L^\mu = \sum_{i=0}^{\infty} T^i_{\rho} L_e - \sum_{i=0}^{\infty} T^i_{\mu} L_e = \sum_{i=0}^{\infty} [T^i_{\rho} L_e - T^i_{\mu} L_e] = \sum_{i=0}^{\infty} T^i_{\Delta} L_e = L^\Delta \]
The Delta Radiance Field

Light Propagation Volumes

- **Setup**
 - Render Reflective Shadow Map
 - Create empty volume (e.g. 32^3)

- **Injection**
 - Sample RSM, create VPLs
 - Inject SH encoded VPLs into volume

- **Propagation**
 - Distribute light from each cell to neighbors for n steps
The Delta Light Propagation Volume
Implementation of a DRF

- Given
 - Real lights, geometry & materials
 - Render RSM R^p (object)
 - Render RSM R^μ (object)
 - Injection (direct + indirect)
 - Add R^p to volume
 - Subtract R^μ from volume
- Proceed normally
Video available at
http://www.tobias-franke.eu/publications/franke13dlpv/
Discussion

Advantages

- **Unified corrective factor** for indirect bounces and shadows
 - Just plug over real radiance field

- Solves **temporal coherency** with brute force
 - Just inject entire RSM to DLPV

- Volumetric correction can support lightfield effects

- **Fast & GPU friendly**
 - Default solution evaluates in ~6 ms
 - Grid solution and propagation steps can be adjusted on new hardware
Discussion
Comparison with Lensing and Broll

Multi-Resolution Splatting

~4k VPLs, d_{normal} 10°, d_{depth} 1 cm
9.8 ms

Delta Light Propagation Volume

~262k VPLs, 32 Propagations
9.6 ms
Discussion

Open issues

- **Low spatial resolution**
 - Shadows heavily aliased
 - Bleeding artifacts
 - Visible in thin geometry
 - Wrong energy subtraction
 - Self-illumination issues
- Volume size may cut off lights and shadows
- Propagation scheme inefficient in the long run
Thank You
Source Code
http://www.tobias-franke.eu/publications/franke13dlpv/